ENGINEERS REPORT for PARADISE PARK RESTROOM BUILDING PROJECT 750 PARADISE ROAD EAST AMHERST NY 14051

Prepared for

TOWN OF AMHERST ENGINEERING DEPARTMENT

1100 N. FOREST ROAD WILLIAMSVILLE, NY 14221

Prepared by

689 Main Street, Buffalo, NY 14203 t 716.656.1900 | f 716.656.1987 didonatoassociates.com

DECEMBER 2024

ENGINEERS REPORT

TABLE OF CONTENTS

DRAINAGE STUDY

APPENDIX C: HYDRAULIC ANALYSIS

I.	IN.	TRODUCT	TON	1
II.	A۱	IALYSIS		1
	A.	Methodolo	ogy	1
	В.	Design Pa	arameters	1
III.	RE	SULTS		2
	A.	EXISTING	G DRAINAGE CONDITIONS	2
	В.	PROPOS	SED DRAINAGE CONDITIONS.	3
	C.	PROPOS	SED DETENTION SYSTEMS	3
IV.		SUMMAF	RY AND CONCLUSIONS	4
WA	TE	RLINE DE	ESIGN	
V.	WA	ATERLINE	DESIGN	5
SE	WE	R SYSTE	M DESIGN	
VI.	SE	WER SYS	STEM DESIGN	6
LIS	TC	OF APPEN	DICES	
ΑP	PEI	NDIX A:	PROJECT LOCATION MAP, SOIL REPORT & UTILITY PLAN	
ΑP	PEI	NDIX B:	DRAWINGS	

I. INTRODUCTION

DiDonato Associates, P.E., P.C. has been retained by the Town of Amherst to perform the site design services for a restroom building for Paradise Park located at 750 Paradise Road in the Town of Amherst, Erie County, New York. The proposed development will comprise of a 1900± square feet single story building.

The following Engineers Report, which includes the drainage study, has been performed in accordance with the Town of Amherst requirements. The drainage study for the building site will address the existing site drainage and the proposed drainage measures related to the construction of the project.

II. ANALYSIS

A. Methodology:

The Natural Resources Conservation Service (NRCS), formerly the Soils Conservation Service (SCS) Technical Report 20 (TR-20) method utilizing HydroCAD 10.0 program by Applied Microcomputer Systems was used to analyze the runoff hydrograph and perform stormwater routing calculations.

As per the Town of Amherst's standards, the retention volume is based on the difference in runoff from the post-developed 25-year storm and the 10-year pre-developed storm.

The Time of Concentration was based on the methods described in the NRCS Technical Report 55 (TR-55). A storm recurrence of 10 years was used for the analysis of the existing watershed and a 25-year storm for analysis of proposed improvements for the watershed. The NRCS Soil Survey of Erie County was used to determine the existing soil classification and is attached in Appendix A. The hydrologic conditions used for the analysis were based primarily on topographic maps for the area along with limited topographic survey data and field investigations. Hydraulic calculations are contained in Appendix C of this report.

B. Design Parameters:

It is proposed that the entire 0.27 acres of the property will be disturbed for this project. The existing hydrology for the site will not be changed due to this construction. The watershed for this analysis was the area impacted by the construction and was used to determine the runoff coefficient for the area based on the watershed characteristics. A section of the property is designated as non-jurisdictional wetlands and will not be disturbed. The time of concentration was taken as the travel time from the most hydraulically distant point in the area to the upstream end of the receiving point.

III. RESULTS

The proposed project will disturb approximately 0.27 acres for the construction of the restroom building some sidewalk along the existing parking lot which is less than an acre and therefore does not require SPDES construction permit. However, this report focuses on the detention of the 10-year design storm for the pre-developed conditions and 25-year design storm for the post-developed conditions as per the Town of Amherst requirements.

The increase in runoff from the post-developed conditions as compared to the pre-developed conditions is due to the increase in the impervious areas for the proposed building and the small sidewalk area. There will however be no overall increase in the runoff for the post-developed conditions at the outfall point. The runoff generated from the new building will be diverted to the existing outfall via a 6-inch perforated pipe under the proposed swale and ultimately to the existing outfall area

The runoff from the existing conditions and the proposed conditions is as follows:

A. EXISTING DRAINAGE CONDITIONS

The existing Paradise Park area consists of playing fields and associated parking area. Runoff from the area flows into an existing depressed grass area and conveyed to an outfall area that acts as a small wetland.

Site soils as depicted in the Web Soil Survey and the Soil Survey of Erie County, New York consist of Cheektowaga (Ch) fine sandy loam (100%), with 0 to 3% slopes, and cover the entire disturbed area and is characterized as poorly drained soil. This soil falls under the hydrologic group C/D. A Natural Resources Conservation Service (NRCS) custom soils report is attached in Appendix A.

The overall runoff from the 1.47± acre section of land is approximately 3.66 cfs for a 10-year storm event. The runoff from this area retained in the wetland overflows into the closed system along Paradise Road. Runoff calculations for the existing conditions are attached in Appendix C of this report. The following table summarizes the existing conditions:

TABLE 1
EXISTING PEAK RUNOFF

DRAINAGE	STORM	DRAIN	AGE AREA	(acre)	PEAK RUNOFF
CONDITIONS	FREQUENCY	Impervious	Pervious	Total	(cfs)
EXISTING	10 Year	0.98	0.49	1.47	3.66
	TOTA	L EXISTING 10	YEAR PEA	K RUNOFF	3.66

B. PROPOSED DRAINAGE CONDITIONS

Approximately 0.27 acre site will be disturbed as part of the project. The proposed development will consist of a 1900 square feet single story building that will be used for commercial purposes. The new impervious area will occupy approximately 1.04 acres, including the proposed restroom building and the existing parking lot. The paved area will continue to drain into the existing grass depressed area which will be regraded to provide positive drainage and detain runoff. The regraded swale will carry the runoff to an existing 12-inch storm pipe that drains into the existing wet brush area. The purpose of this design is to slow down the runoff velocities and reduce the overall runoff from the developed site.

The following table summarizes the runoff from the proposed development for a 25 year post developed storm event:

TABLE 2
PROPOSED PEAK RUNOFF

PROPOSED	STORM	DRAIN	AGE AREA ((acre)	PEAK RUNOFF	
DRAINAGE CONDITIONS	FREQUENCY	Impervious	Pervious	Total	(cfs)	
DEVELOPED SITE	25 Year	25 Year 1.04 0.43 1.47				
	TOTAL	_ 25 YEAR OVI	ERALL PEA	K RUNOFF	4.67	

C. PROPOSED DETENTION SYSTEMS

The following table summarizes the amount of detention being provided for the post-developed conditions as compared to the pre-developed conditions as required by the Town of Amherst guidelines.

TABLE 3
PROPOSED DETENTION

DETENTION AREA	STORM	I	RUNOFF (d	ofs)	PEAK
DETENTION AREA	FREQUENCY	Inflow	Outflow	Storage (cf)	RUNOFF (cfs)
OVERALL SITE	25 Year	4.67	2.50	3476	2.50
		PROPOSED	25 YEAR I	PEAK RUNOFF	2.50

The overall runoff from the developed site increases due to the creation of the impervious areas. The runoff from the 10-year storm for the existing conditions is 3.66 cfs as compared to the 4.67 cfs for the 25 year storm, the increase in the runoff will require detention of the excess runoff generated. It is proposed that the excess runoff from the site will be stored within the drainage swales proposed for the project. The peak runoff from the developed site will be 2.50 cfs as compared to the allowable 3.66 cfs, thus reducing the overall site runoff by approximately 32%. Detention for the excess runoff will be provided in the swale located along two parking areas. The calculations for the existing and proposed conditions are attached in Appendix C of this report.

IV. SUMMARY AND CONCLUSIONS

The storm sewer system for the proposed restroom building for Paradise Park located at 750 Paradise Road in Amherst is designed to meet the requirements of the Town of Amherst. The proposed development will result in no net increase in the peak stormwater runoff from the developed site as compared to the pre-developed conditions on the outfall location. The majority of the existing area characteristics and the drainage pattern of the surrounding area will not change due to this development.

V. WATERLINE DESIGN / RPZ REPORT

There is an existing 3-inch RPZ located at Paradise Park, and it is proposed that the proposed water services to the new restroom building will be connected to the existing water lie at the RPZ.

This new water service will be used for typical bathroom uses (including toilet flushing and hand washing). The design water usage for the proposed office building shall be 3410 gpd based on the peak water demand.

Waterline Chlorination and Testing

The newly installed water service shall be tested prior to being placed in service. Current Erie County Water Authority and Erie County Health Department (Erie County Department of Environment and Planning) standards will be utilized for these tests. All installed pipes will be new and in excellent condition and will be disinfected with a chlorine solution meeting the requirements of the ECWA and the American Water Works Association (AWWA). Approval from the Paradise County Water Authority will be obtained prior to placing any waterline in service.

VI. SANITARY SEWER DESIGN

PROJECT DESCRIPTION

The Town of Amherst owns and maintains numerous parks and several of them currently do not offer permanent restroom facilities. Paradise Park is located on Paradise Road near the intersection of Casey Road to the North. This park area includes three (3) soccer fields, four (4) pickleball courts, as well as passive amenities such as a basketball court and several playground structures and a picnic shelter. In order to enhance the user experience of this park, a new single-story, ADA-compliant building will be constructed to include restrooms and storage and will be located in close proximity to the onsite recreational elements. The new restroom building to be constructed will be seasonal in nature and in-use from April through September.

Wastewater from the site will flow east from the new building (shown on the enclosed site plan) by a new six (6) inch sanitary service lateral and connecting into the existing manhole on the west side of Paradise; thence east via existing 8-inch gravity sewer to the existing 12-inch gravity sewer running south along the east side of Paradise Road to the existing 18-inch trunk line located on the abandoned Peanut Line Railroad; thence westerly by 30-inch, 54-inch and 60-inch along the Peanut Line to Sweet Home Rd; thence continuing westerly by 66-inch to the 84-inch interceptor which flows northerly to the Town of Amherst WPCF #16 on Tonawanda Creek Road.

Sanitary Flows (as per demand calculations provided):

Average Daily Flows: 0.00077 MGD (771.4 gpd) [Seasonal flows from April through September]

Note: Average sanitary demand is well less than 2,500 gpd and therefore a Downstream Sewer Capacity Analysis (DSCA) and I/I mitigation is not required.

Find Peak Sanitary Demand:

Peaking factor based on population

Total Demand: 771.4 gpd / 100 gpcd = 7.71 per capita say = 8 per capita

Population (P) = 8 people

Peaking Factor Demand Calcs: $(18 + \sqrt{P}) / (4 + \sqrt{P})$ [P is in thousands]

Peaking Factor: $(18 + \sqrt{0.008}) / (4 + \sqrt{0.008}) = 4.42$

Peak Sanitary Demand = 771.4 gpd x 4.42 = 3,410 gpd = 0.00341 mgd

APPENDIX A

LOCATION & SOIL MAPS

Natural Resources

Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Erie County, New York**

Paradise Park Restroom Building 750 Paradise Road Amherst NY14051

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Erie County, New York	
Ch—Cheektowaga fine sandy loam	13
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

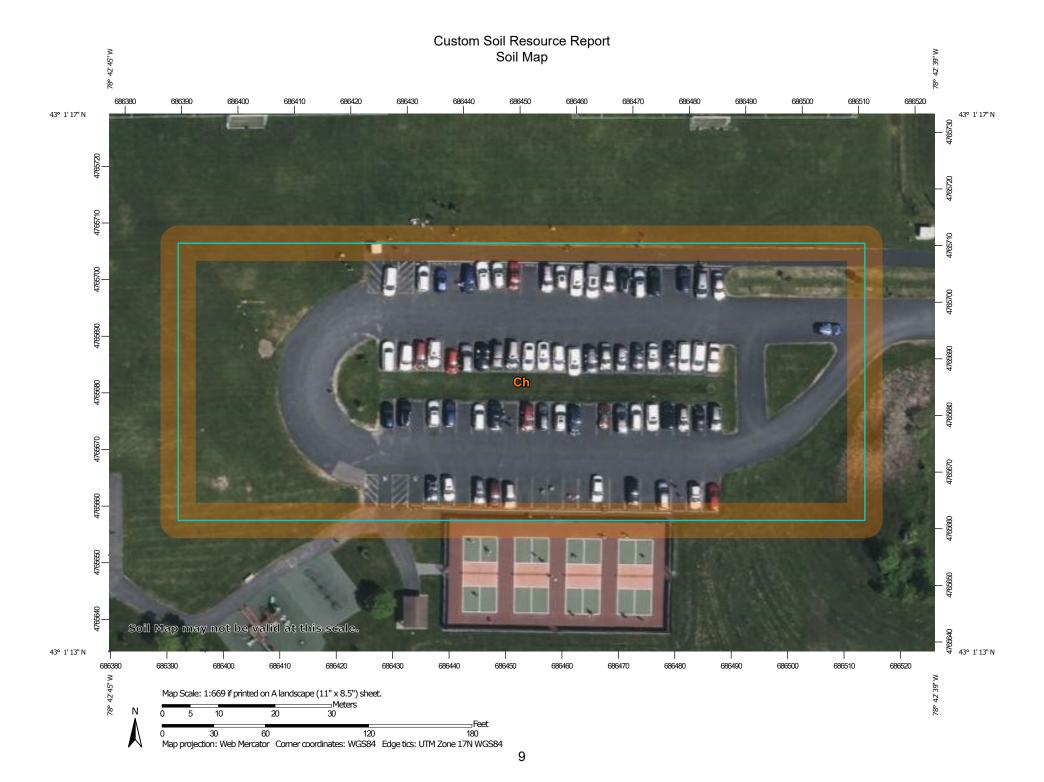
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(0)

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

Closed Depression

×

Gravel Pit

.

Gravelly Spot

Ø

Landfill Lava Flow

٨

Marsh or swamp

2

Mine or Quarry

0

Miscellaneous Water

0

Perennial Water
Rock Outcrop

+

Saline Spot

. .

Sandy Spot

_

Severely Eroded Spot

Λ

Sinkhole

8

Slide or Slip

Ø

Sodic Spot

Spoil Area

Stony Spot
Very Stony Spot

Wet Spot

δ.

Other

*

Special Line Features

Water Features

_

Streams and Canals

Transportation

Fransp

Rails

~

Interstate Highways

US Routes

 \sim

Major Roads

~

Local Roads

Background

1

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Erie County, New York Survey Area Data: Version 24, Aug 25, 2024

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 13, 2023—May 27, 2023

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ch	Cheektowaga fine sandy loam	1.5	100.0%
Totals for Area of Interest		1.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Custom Soil Resource Report

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Erie County, New York

Ch—Cheektowaga fine sandy loam

Map Unit Setting

National map unit symbol: 9rkn Elevation: 200 to 800 feet

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Cheektowaga and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cheektowaga

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Sandy deltaic deposits over clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: fine sandy loam H2 - 9 to 22 inches: loamy fine sand H3 - 22 to 26 inches: loamy fine sand

H4 - 26 to 60 inches: stratified silty clay to silty clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C/D

Ecological site: F101XY007NY - Wet Outwash

Hydric soil rating: Yes

Minor Components

Canandaigua

Percent of map unit: 5 percent

Custom Soil Resource Report

Landform: Depressions Hydric soil rating: Yes

Claverack

Percent of map unit: 5 percent Hydric soil rating: No

Cosad

Percent of map unit: 5 percent Hydric soil rating: No

Lamson

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Unnamed soils

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

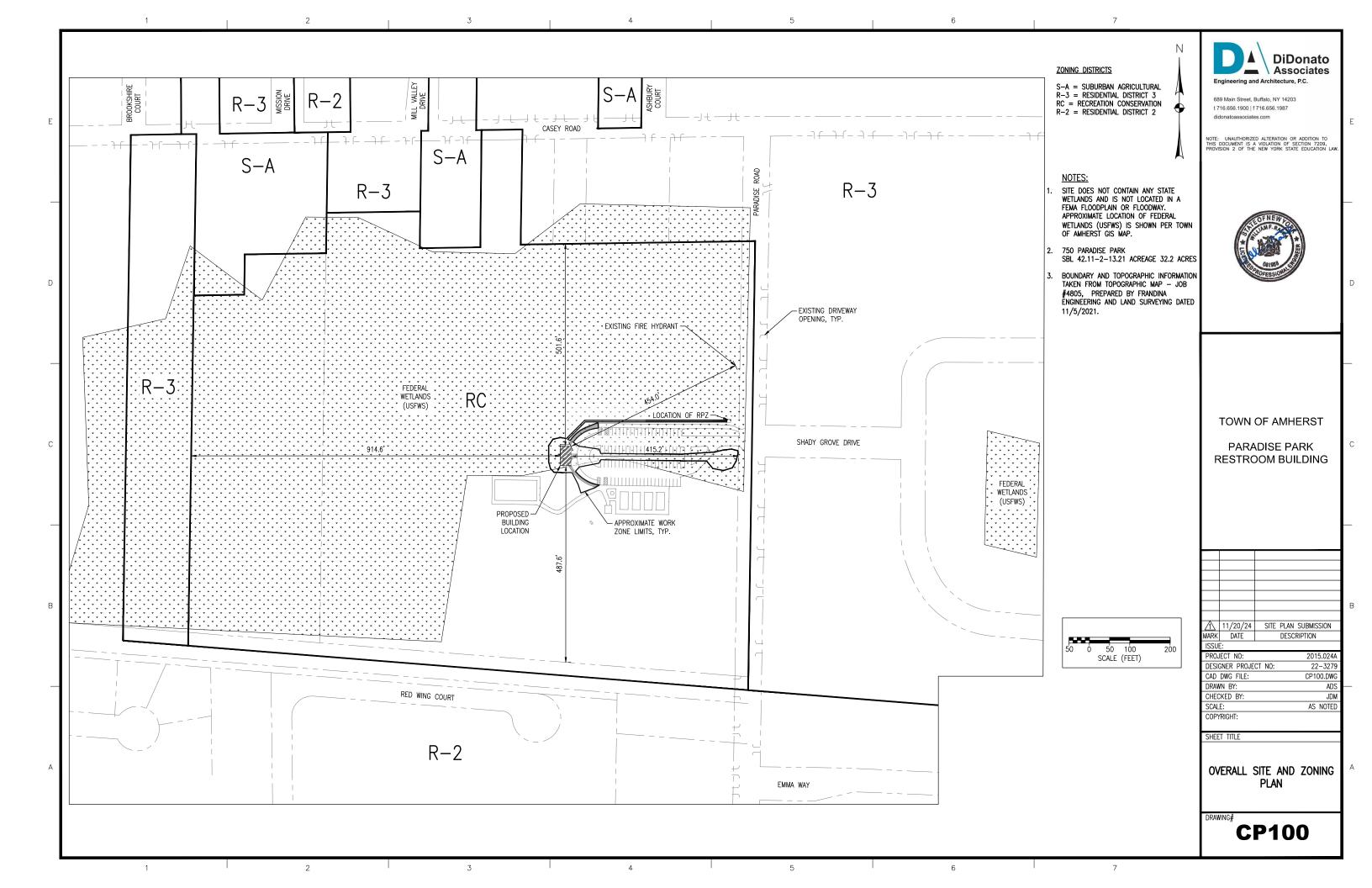
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

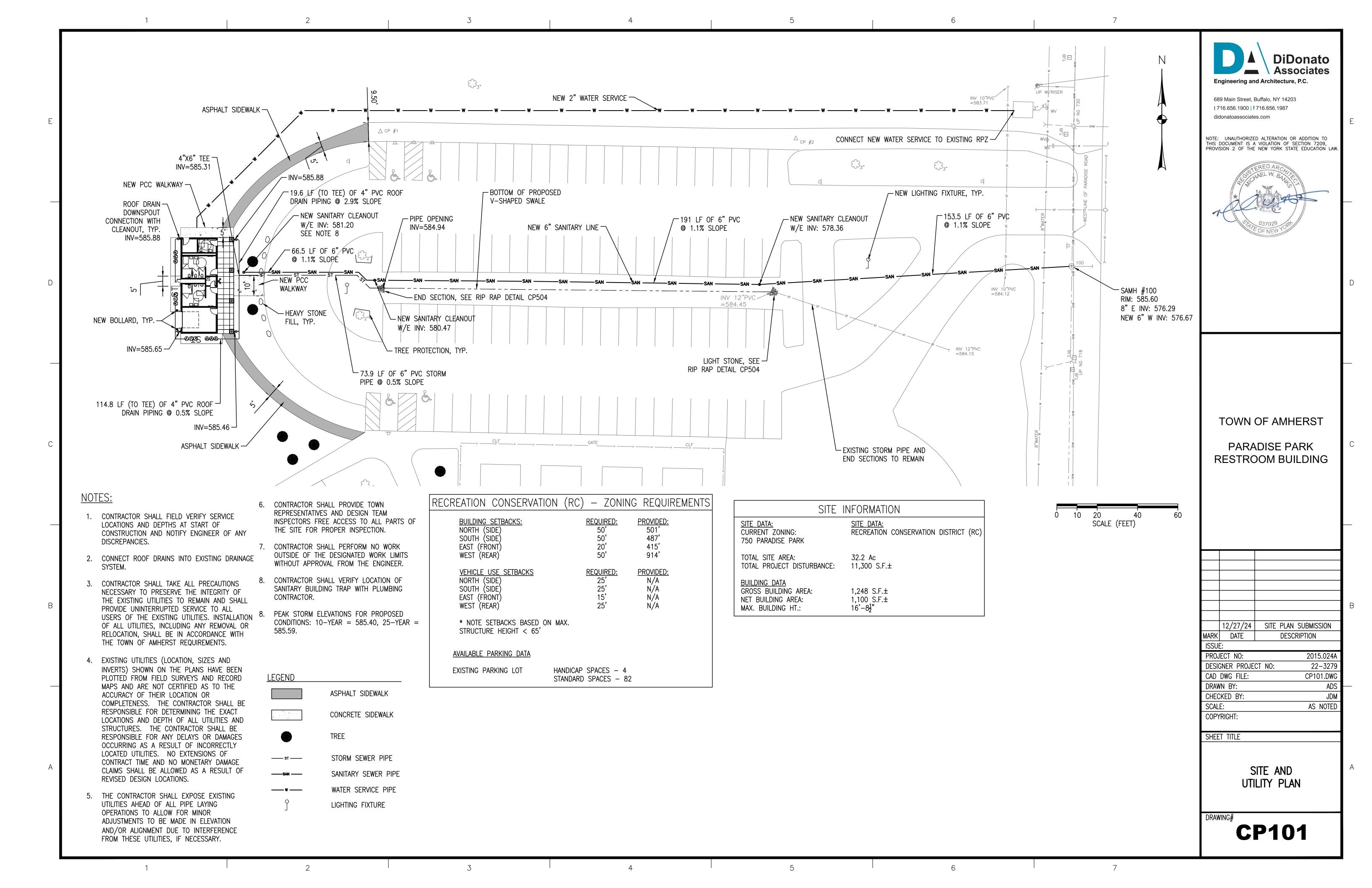
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

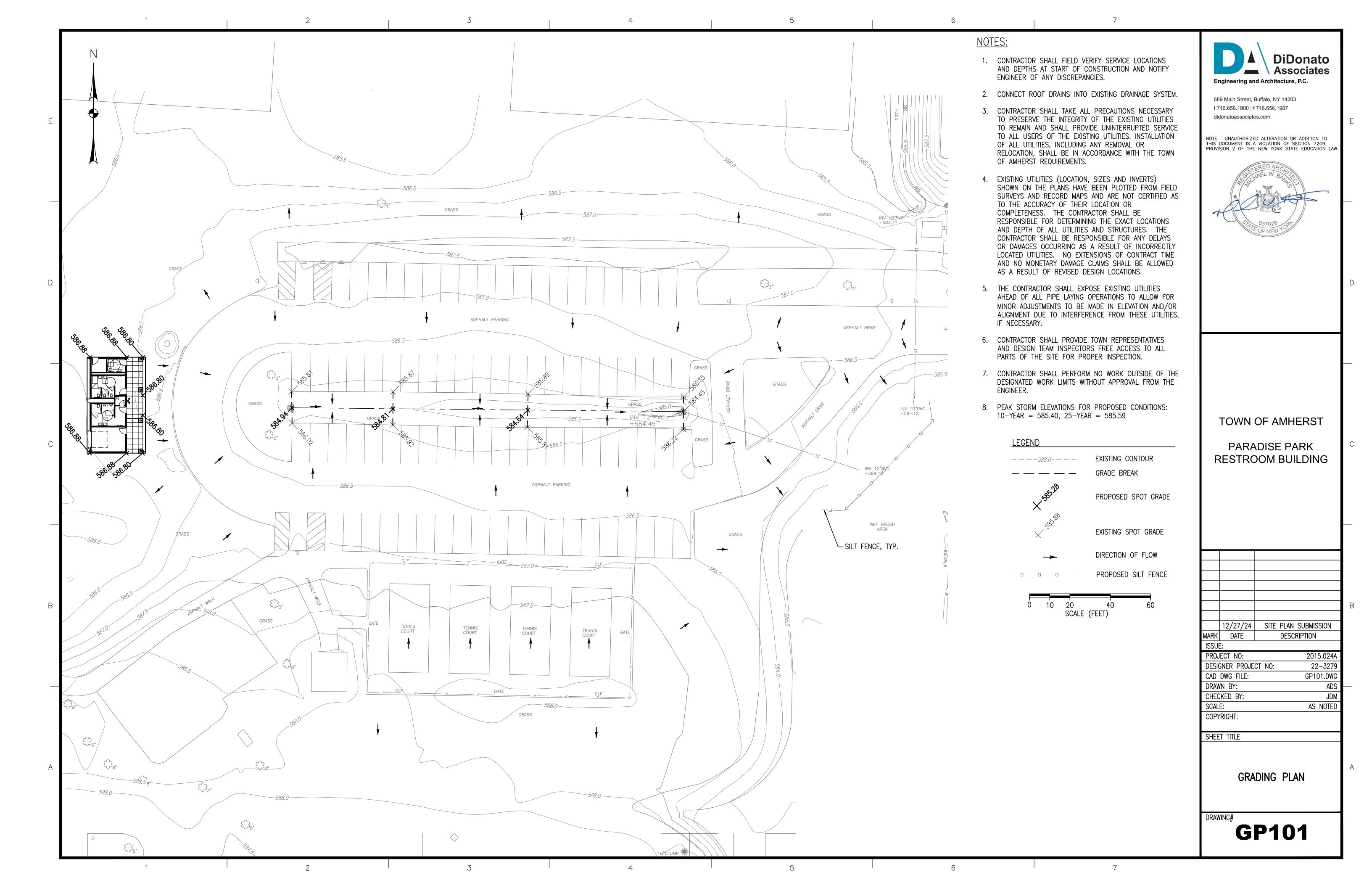
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624


United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf



APPENDIX B

PROJECT DRAWINGS

APPENDIX C

HYDRAULIC ANALYSIS

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Metadata for Point

Smoothing Yes State New York

Location New York, United States Latitude 43.021 degrees North Longitude 78.712 degrees West

170 feet Elevation

Mon Nov 18 2024 12:00:41 GMT-0500 (Eastern Standard Time) Date/Time

Extreme Precipitation Estimates

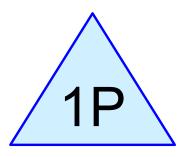
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.41	0.51	0.66	0.83	1.01	1yr	0.71	0.94	1.14	1.34	1.57	1.81	2.08	1yr	1.60	2.00	2.41	2.90	3.37	1yr
2yr	0.31	0.47	0.59	0.77	0.97	1.19	2yr	0.84	1.09	1.34	1.59	1.87	2.17	2.43	2yr	1.92	2.34	2.76	3.29	3.78	2yr
5yr	0.36	0.56	0.70	0.94	1.20	1.48	5yr	1.04	1.36	1.68	1.98	2.31	2.65	2.97	5yr	2.34	2.86	3.35	3.95	4.50	5yr
10yr	0.40	0.64	0.80	1.09	1.42	1.76	10yr	1.23	1.62	1.99	2.35	2.71	3.08	3.46	10yr	2.72	3.32	3.87	4.53	5.14	10yr
25yr	0.48	0.76	0.97	1.34	1.78	2.21	25yr	1.53	2.03	2.49	2.92	3.34	3.76	4.23	25yr	3.33	4.07	4.70	5.45	6.13	25yr
50yr	0.54	0.87	1.12	1.56	2.10	2.62	50yr	1.81	2.41	2.96	3.45	3.92	4.38	4.93	50yr	3.88	4.74	5.44	6.27	7.00	50yr
100yr	0.62	1.00	1.29	1.83	2.49	3.12	100yr	2.15	2.86	3.52	4.08	4.61	5.10	5.74	100yr	4.52	5.52	6.29	7.21	8.01	100yr
200yr	0.71	1.16	1.50	2.14	2.96	3.70	200yr	2.55	3.41	4.17	4.82	5.41	5.95	6.70	200yr	5.27	6.44	7.29	8.29	9.16	200yr
500yr	0.85	1.40	1.82	2.65	3.71	4.65	500yr	3.20	4.29	5.23	6.01	6.69	7.29	8.21	500yr	6.45	7.89	8.86	9.98	10.94	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.58	0.71	0.89	1yr	0.61	0.87	0.85	1.16	1.47	1.66	1.96	1yr	1.47	1.89	2.16	2.51	3.04	1yr
2yr	0.29	0.45	0.56	0.76	0.93	1.07	2yr	0.81	1.05	1.17	1.43	1.72	2.11	2.37	2yr	1.87	2.28	2.70	3.21	3.69	2yr
5yr	0.33	0.51	0.63	0.87	1.11	1.27	5yr	0.96	1.24	1.39	1.67	2.02	2.45	2.79	5yr	2.17	2.68	3.17	3.73	4.24	5yr
10yr	0.36	0.56	0.69	0.96	1.24	1.43	10yr	1.07	1.40	1.57	1.88	2.27	2.74	3.16	10yr	2.43	3.04	3.56	4.18	4.65	10yr
25yr	0.41	0.63	0.79	1.12	1.48	1.70	25yr	1.27	1.66	1.82	2.19	2.66	3.17	3.72	25yr	2.81	3.58	4.14	4.84	5.18	25yr
50yr	0.46	0.69	0.86	1.24	1.67	1.92	50yr	1.44	1.87	2.03	2.45	2.99	3.53	4.22	50yr	3.13	4.06	4.66	5.42	5.62	50yr
100yr	0.50	0.75	0.94	1.36	1.87	2.16	100yr	1.61	2.11	2.26	2.73	3.36	3.94	4.78	100yr	3.49	4.60	5.22	6.07	6.06	100yr
200yr	0.55	0.83	1.05	1.52	2.11	2.45	200yr	1.82	2.40	2.50	3.02	3.75	4.38	5.41	200yr	3.88	5.21	5.85	6.78	6.51	200yr
500yr	0.62	0.93	1.20	1.74	2.47	2.89	500yr	2.13	2.82	2.84	3.45	4.33	5.03	6.39	500yr	4.45	6.14	6.81	7.85	7.12	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.30	0.46	0.56	0.75	0.92	1.07	1yr	0.80	1.04	1.21	1.41	1.68	1.91	2.21	1yr	1.69	2.12	2.56	3.08	3.56	1yr
2yr	0.32	0.49	0.60	0.82	1.01	1.17	2yr	0.87	1.14	1.30	1.57	1.86	2.25	2.50	2yr	1.99	2.41	2.86	3.37	3.95	2yr
5yr	0.39	0.60	0.74	1.02	1.30	1.54	5yr	1.12	1.51	1.70	2.07	2.45	2.86	3.16	5yr	2.53	3.04	3.54	4.17	4.73	5yr
10yr	0.46	0.71	0.88	1.22	1.58	1.90	10yr	1.36	1.86	2.11	2.57	3.03	3.43	3.77	10yr	3.04	3.63	4.18	4.91	5.53	10yr
25yr	0.58	0.88	1.10	1.57	2.06	2.52	25yr	1.78	2.47	2.81	3.43	4.00	4.39	4.77	25yr	3.89	4.59	5.23	6.10	6.82	25yr
50yr	0.69	1.04	1.30	1.87	2.51	3.14	50yr	2.17	3.07	3.50	4.27	4.94	5.30	5.71	50yr	4.69	5.49	6.20	7.19	8.02	50yr
100yr	0.82	1.24	1.55	2.24	3.07	3.89	100yr	2.65	3.80	4.38	5.33	6.12	6.40	6.82	100yr	5.67	6.55	7.36	8.49	9.42	100yr
200yr	0.97	1.47	1.86	2.69	3.75	4.83	200yr	3.24	4.72	5.50	6.67	7.58	7.74	8.14	200yr	6.85	7.83	8.72	10.03	11.08	200yr
500yr	1.24	1.84	2.37	3.44	4.90	6.44	500yr	4.22	6.30	7.43	8.97	10.09	9.98	10.32	500yr	8.84	9.92	10.94	12.50	13.74	500yr



EXISTING CONDITIONS

10 YEAR STORM

EXISTING CONDITIONS

Existing Ourfall Area

Existing Area

Existing Conditions
Prepared by DiDonato Associates, PE, PC
HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

Printed 12/26/2024 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.490	74	>75% Grass cover, Good, HSG C (EA)
0.980	98	Paved parking, HSG C (EA)
1.470	90	TOTAL AREA

Existing Conditions
Prepared by DiDonato Associates, PE, PC
HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

Printed 12/26/2024 Page 3

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
1.470	HSG C	EA
0.000	HSG D	
0.000	Other	
1.470		TOTAL AREA

Existing Conditions
Prepared by DiDonato Associates, PE, PC
HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

Printed 12/26/2024

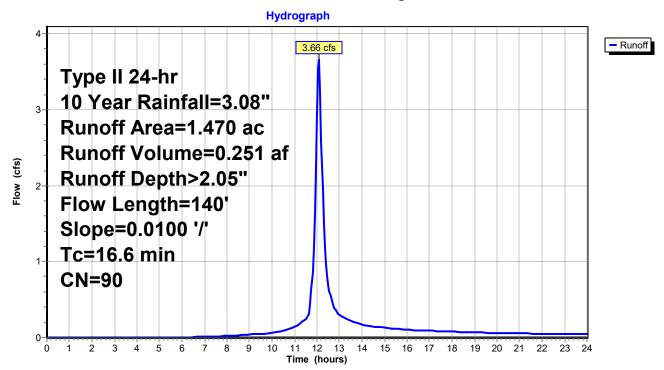
Page 4

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.490	0.000	0.000	0.490	>75% Grass cover, Good	EA
0.000	0.000	0.980	0.000	0.000	0.980	Paved parking	EA
0.000	0.000	1.470	0.000	0.000	1.470	TOTAL AREA	

Summary for Subcatchment EA: Existing Area

Runoff = 3.66 cfs @ 12.09 hrs, Volume= 0.251 af, Depth> 2.05"


Routed to Pond 1P: Existing Ourfall Area

CN Time Span= 0.00-24.00 brs. dt= 0.05 brs.

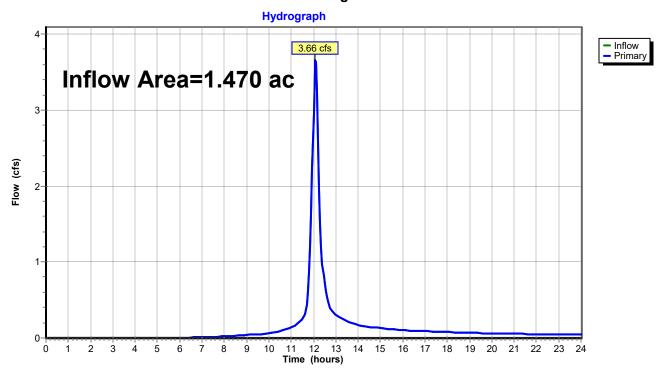
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 10 Year Rainfall=3.08"

Area (ac) CN Description 0.490 74 >75% Grass cover, Good, HSG C 0.980 98 Paved parking, HSG C 1.470 90 Weighted Average 0.490 33.33% Pervious Area 0.980 66.67% Impervious Area Tc Length (ft/ft) Capacity (cfs) (min) (feet) (ft/ft) (ft/sec) (cfs) 15.7 100 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 2.17" 0.9 40 0.0100 0.71 Sheet Flow, Sheet Flow, Grass: Short n= 0.150 P2= 2.17"						
	0.	490 7	74 >75°	% Grass c	over, Good	, HSG C
0.490 74 >75% Grass cover, Good, HSG C 0.980 98 Paved parking, HSG C 1.470 90 Weighted Average 0.490 33.33% Pervious Area 0.980 66.67% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 15.7 100 0.0100 0.11 Sheet Flow, 0.9 40 0.0100 0.71 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.17"						
1.470 90 Weighted Average						
	0.	490	33.3	3% Pervio	us Area	
	0.	980	66.6	7% Imperv	/ious Area	
	Tc	Length	Slope	,		Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.7	100	0.0100	0.11		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.17"
	0.9	40	0.0100	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.17"
	16.6	140	Total			

Subcatchment EA: Existing Area

/n 02514 © 2023 HydroCAD Software Solutions LLC Page 6

Summary for Pond 1P: Existing Ourfall Area

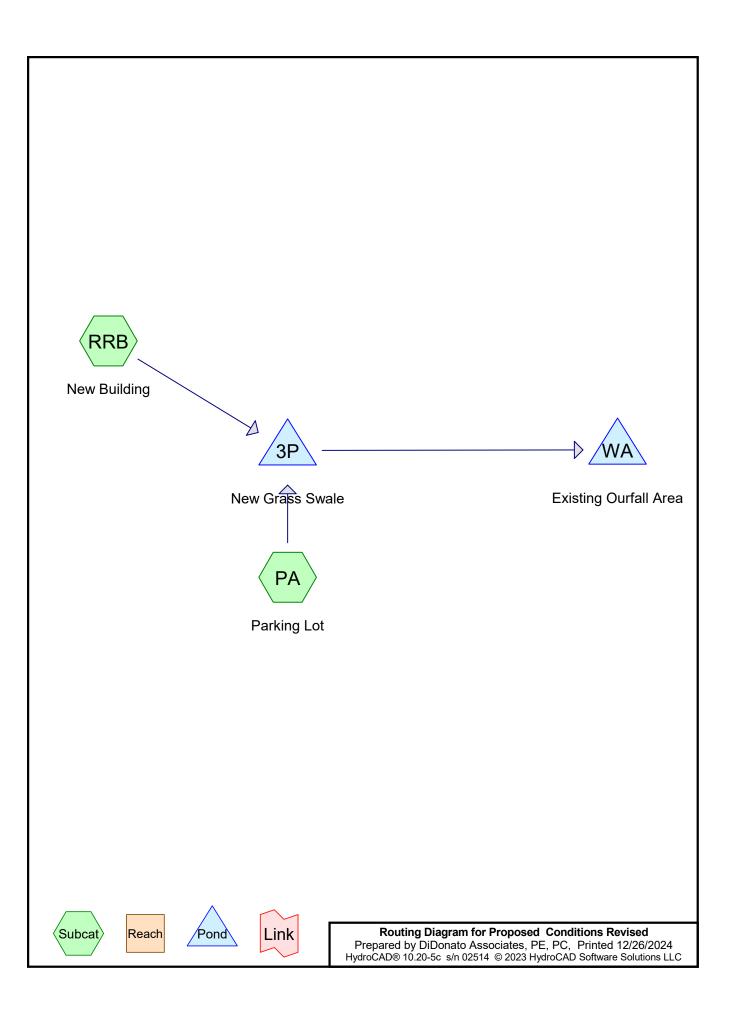

Inflow Area = 1.470 ac, 66.67% Impervious, Inflow Depth > 2.05" for 10 Year event

Inflow = 3.66 cfs @ 12.09 hrs, Volume= 0.251 af

Primary = 3.66 cfs @ 12.09 hrs, Volume= 0.251 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Pond 1P: Existing Ourfall Area



PROPOSED CONDITIONS

10 & 25 YEAR STORM

PROPOSED CONDITIONS

Proposed Conditions Revised
Prepared by DiDonato Associates, PE, PC
HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

Printed 12/26/2024 Page 2

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.430	74	>75% Grass cover, Good, HSG C (PA)
1.000	98	Paved parking, HSG C (PA)
0.040	98	Roofs, HSG C (RRB)
1.470	91	TOTAL AREA

Proposed Conditions Revised
Prepared by DiDonato Associates, PE, PC
HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

Printed 12/26/2024

Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
1.470	HSG C	PA, RRB
0.000	HSG D	
0.000	Other	
1.470		TOTAL AREA

Proposed Conditions Revised
Prepared by DiDonato Associates, PE, PC
HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

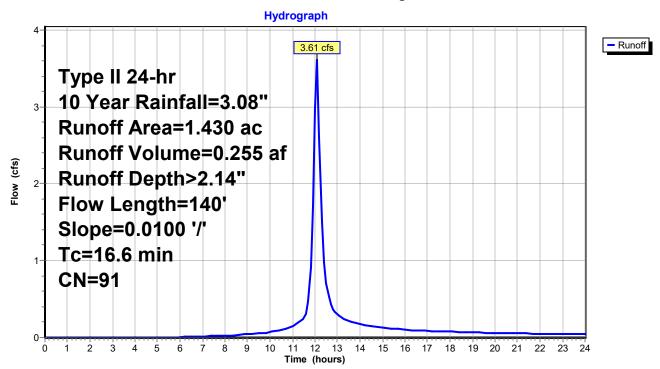
Printed 12/26/2024

Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.430	0.000	0.000	0.430	>75% Grass cover, Good	PA
0.000	0.000	1.000	0.000	0.000	1.000	Paved parking	PA
0.000	0.000	0.040	0.000	0.000	0.040	Roofs	RRB
0.000	0.000	1.470	0.000	0.000	1.470	TOTAL AREA	

Summary for Subcatchment PA: Parking Lot


0.255 af, Depth> 2.14" Runoff 3.61 cfs @ 12.09 hrs, Volume=

Routed to Pond 3P: New Grass Swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Type II 24-hr 10 Year Rainfall=3.08"

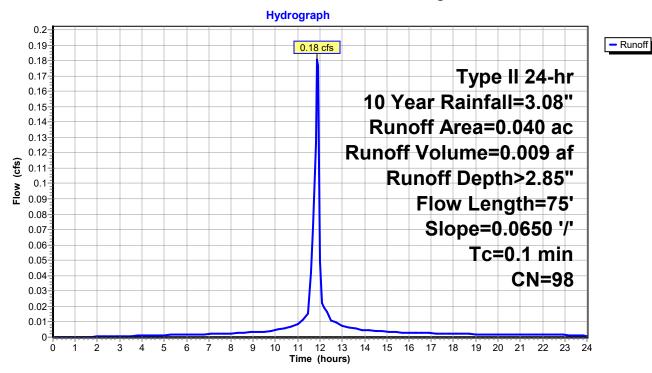
Area (ac) CN Description 0.430 74 >75% Grass cover, Good, HSG C 1.000 98 Paved parking, HSG C 1.430 91 Weighted Average 0.430 30.07% Pervious Area 1.000 69.93% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 15.7 100 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 2.17" 0.9 40 0.0100 0.71 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.17"						
	0.4	430 7	'4 >75°	% Grass c	over, Good	, HSG C
	1.0	000	8 Pave	ed parking	, HSG C	
1.430 91 Weighted Average						
	0.4	430	30.0	7% Pervio	us Area	
	1.	000	69.9	3% Imperv	∕ious Area	
	Tc	Length	Slope			Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.7	100	0.0100	0.11		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.17"
	0.9	40	0.0100	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.17"
	16.6	140	Total			

Subcatchment PA: Parking Lot

Summary for Subcatchment RRB: New Building

Runoff = 0.18 cfs @ 11.88 hrs, Volume= 0

0.009 af, Depth> 2.85"


Routed to Pond 3P: New Grass Swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Type II 24-hr 10 Year Rainfall=3.08"

n = 0.011

	Area	(ac) C	N Desc	cription		
	0.	.040 9	8 Roof	fs, HSG C		
	0.	.040	100.	00% Impe	rvious Area	1
	Тс	Length	Slope	Velocity	Capacity	Description
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.1	75	0.0650	8.61	1.69	Pipe Channel,
						6.0" Round Area= 0.2 sf Perim= 1.6' r= 0.13'

Subcatchment RRB: New Building

HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

Printed 12/26/2024 Page 7

Summary for Pond 3P: New Grass Swale

Inflow Area = 1.470 ac, 70.75% Impervious, Inflow Depth > 2.16" for 10 Year event

3.63 cfs @ 12.09 hrs, Volume= 0.264 af Inflow =

1.99 cfs @ 12.26 hrs, Volume= 1.99 cfs @ 12.26 hrs, Volume= Outflow = 0.263 af, Atten= 45%, Lag= 10.7 min

Primary = 0.263 af

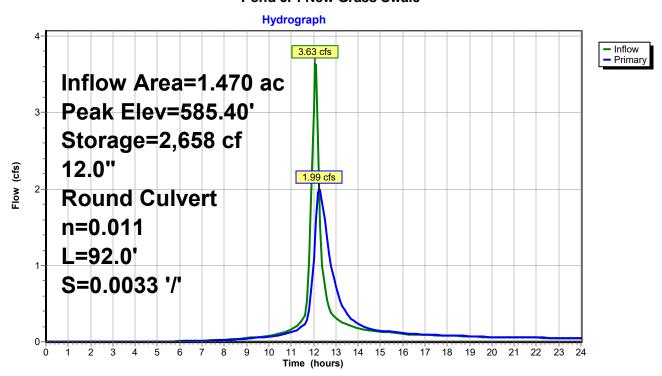
Routed to Pond WA: Existing Ourfall Area

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Peak Elev= 585.40' @ 12.26 hrs Surf.Area= 4,224 sf Storage= 2,658 cf

Plug-Flow detention time= 21.0 min calculated for 0.263 af (99% of inflow)

Center-of-Mass det. time= 17.8 min (824.3 - 806.5)

Volume	Inv	ert Avail	.Storage	Storage	Description					
#1	584.4	45'	4,893 cf	Custom	Stage Data (Pris	matic) Listed	below (Red	calc)		
Elevation		Surf.Area		Store	Cum.Store					
(feet	t)	(sq-ft)	(cubic	-feet)	(cubic-feet)					
584.4	5	1		0	0					
585.00	0	3,800		1,045	1,045					
585.90	0	4,750	;	3,847	4,893					
Device	Routing	Inv	ert Outle	t Device	s					
11.4		E0.4	451 40 01		0 1 1 00 0	000			14 0 500	


584.45' **12.0" Round Culvert** L= 92.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 584.45' / 584.15' S= 0.0033 '/' Cc= 0.900 #1 Primary

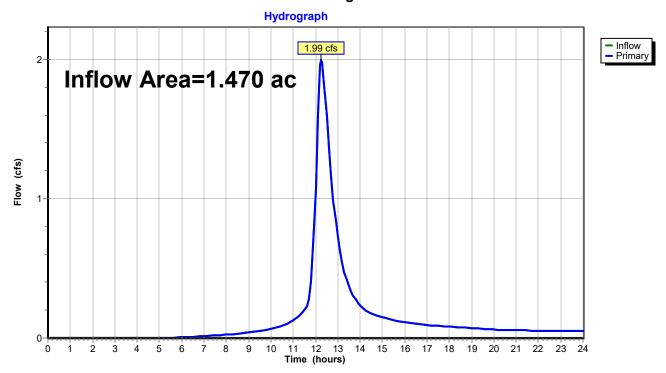
n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=1.97 cfs @ 12.26 hrs HW=585.39' (Free Discharge)

1=Culvert (Barrel Controls 1.97 cfs @ 3.32 fps)

Pond 3P: New Grass Swale

Summary for Pond WA: Existing Ourfall Area


1.470 ac, 70.75% Impervious, Inflow Depth > 2.15" for 10 Year event Inflow Area =

Inflow = 1.99 cfs @ 12.26 hrs, Volume= 0.263 af

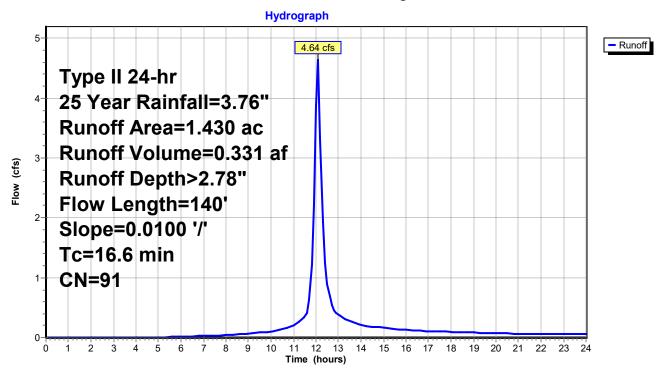
1.99 cfs @ 12.26 hrs, Volume= 0.263 af, Atten= 0%, Lag= 0.0 min Primary =

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs

Pond WA: Existing Ourfall Area

Summary for Subcatchment PA: Parking Lot

Runoff = 4.64 cfs @ 12.09 hrs, Volume= 0.331 a


0.331 af, Depth> 2.78"

Routed to Pond 3P: New Grass Swale

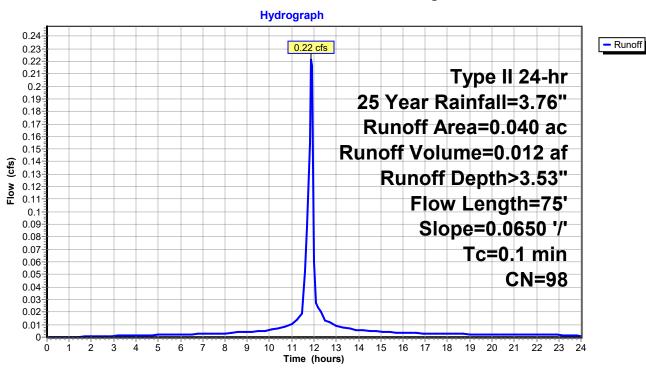
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Type II 24-hr 25 Year Rainfall=3.76"

_	Area	(ac) C	N Desc	cription		
Area (ac) CN Description 0.430 74 >75% Grass cover, Good, HSG C 1.000 98 Paved parking, HSG C 1.430 91 Weighted Average 0.430 30.07% Pervious Area 1.000 69.93% Impervious Area Tc Length (feet) Slope Velocity Capacity (cfs) 15.7 100 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 0.9 40 0.0100 0.71 Sheet Flow, Smooth surfaces n= 0.011 Smooth surfaces n= 0.011 P2= 2.17"						
_	1.0	000	8 Pave	ed parking	, HSG C	
	1.4	430 9	1 Weig	ghted Avei	age	
	0.4	430	30.0	7% Pervio	us Area	
	1.	000	69.9	3% Imperv	/ious Area	
	Tc	Length	•			Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.7	100	0.0100	0.11		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.17"
	0.9	40	0.0100	0.71		Sheet Flow,
_						Smooth surfaces n= 0.011 P2= 2.17"
	16.6	140	Total			

Subcatchment PA: Parking Lot

Summary for Subcatchment RRB: New Building

Runoff = 0.22 cfs @ 11.88 hrs, Volume= 0.012 af, Depth> 3.53"


Routed to Pond 3P: New Grass Swale

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Type II 24-hr 25 Year Rainfall=3.76"

n= 0.011

	Area	(ac) C	N Des	cription		
	0.	.040 9	8 Root	fs, HSG C		
	0.	.040	100.	00% Impe	rvious Area	a a constant of the constant o
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	0.1	75	0.0650	8.61	1.69	Pipe Channel,
						6.0" Round Area= 0.2 sf Perim= 1.6' r= 0.13'

Subcatchment RRB: New Building

HydroCAD® 10.20-5c s/n 02514 © 2023 HydroCAD Software Solutions LLC

Page 11

Summary for Pond 3P: New Grass Swale

Inflow Area = 1.470 ac, 70.75% Impervious, Inflow Depth > 2.80" for 25 Year event

4.67 cfs @ 12.09 hrs, Volume= 0.343 af Inflow =

2.50 cfs @ 12.27 hrs, Volume= 2.50 cfs @ 12.27 hrs, Volume= Outflow = 0.341 af, Atten= 47%, Lag= 10.9 min

Primary = 0.341 af

Routed to Pond WA: Existing Ourfall Area

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs Peak Elev= 585.59' @ 12.27 hrs Surf.Area= 4,424 sf Storage= 3,476 cf

Plug-Flow detention time= 21.2 min calculated for 0.340 af (99% of inflow)

Center-of-Mass det. time= 18.1 min (817.5 - 799.4)

Volume	Inv	ert Ava	il.Storage	Storage	Descrip	tion			
#1	584.	45'	4,893 cf	Custom	Stage D	ata (Prisn	natic) Listed belo	ow (Recalc)	
Elevation	on	Surf.Area	Inc	.Store	Cum	n.Store			
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubi	ic-feet)			
584.4	45	1		0		0			
585.0	00	3,800		1,045		1,045			
585.9	90	4,750		3,847		4,893			
Device	Routing	In	vert Outl	et Devices	5				
#1	Primary	58/	/5' 12 0	" Round (Culvert	I = 92.0'	CPP and-secti	on conforming to fill	Ke= 0.500

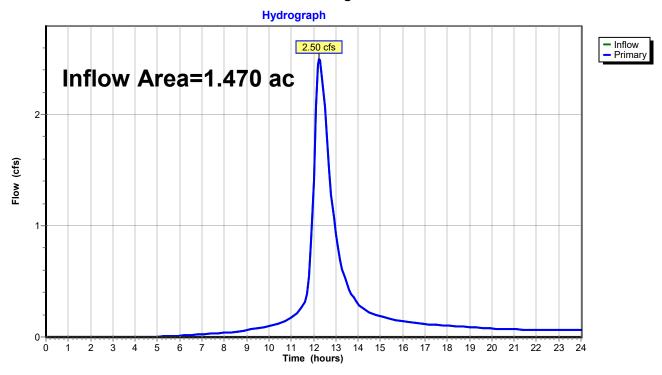
12.0" Round Culvert L= 92.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 584.45' / 584.15' S= 0.0033 '/' Cc= 0.900 Primary

n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=2.48 cfs @ 12.27 hrs HW=585.58' (Free Discharge) 1=Culvert (Barrel Controls 2.48 cfs @ 3.48 fps)

Pond 3P: New Grass Swale

Summary for Pond WA: Existing Ourfall Area


1.470 ac, 70.75% Impervious, Inflow Depth > 2.79" for 25 Year event Inflow Area =

Inflow = 2.50 cfs @ 12.27 hrs, Volume= 0.341 af

2.50 cfs @ 12.27 hrs, Volume= 0.341 af, Atten= 0%, Lag= 0.0 min Primary =

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.10 hrs

Pond WA: Existing Ourfall Area

